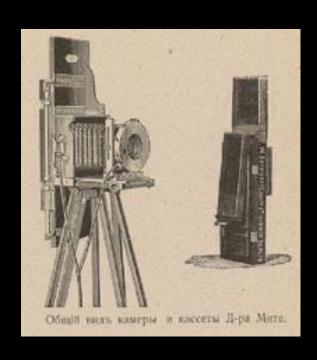
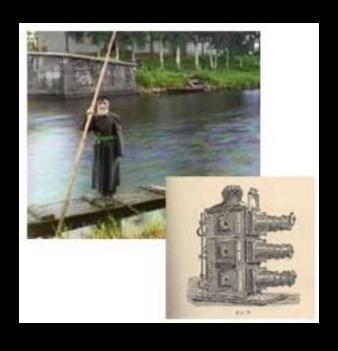
Programming Project #1

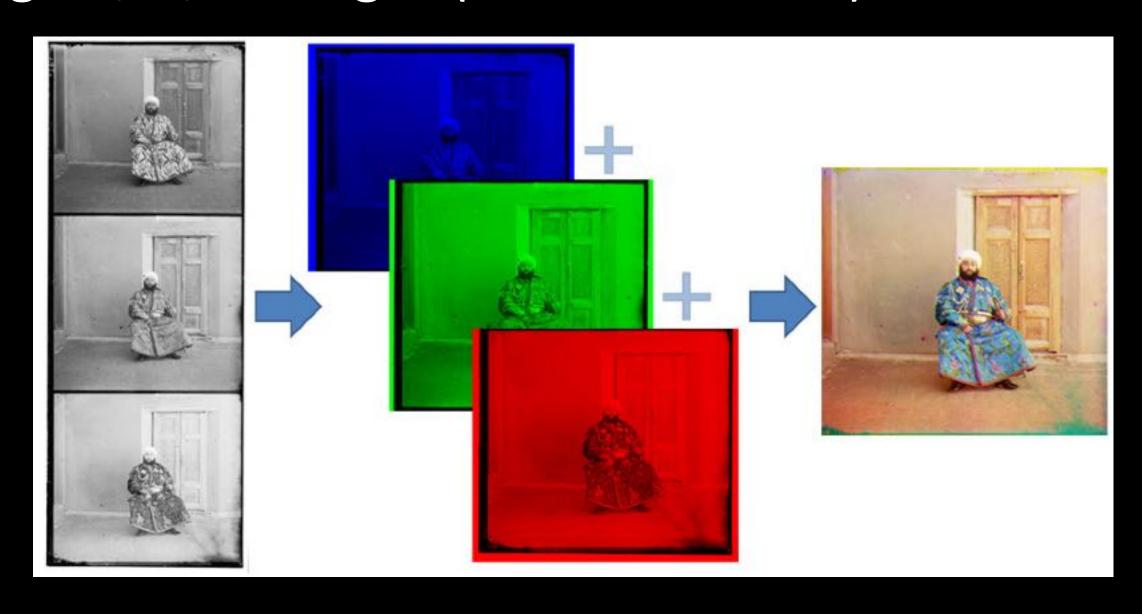
Prokudin-Gorskii's Color Photography (1907)





Programming Project #1

Align R, G, B images (Due 2/16/2022)



Programming Project #1

- How to compare R,G,B channels?
- No right answer
 - Sum of Squared Differences (SSD):

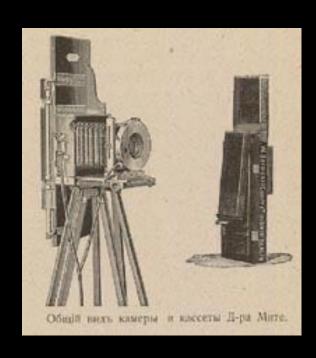
$$ssd(u,v) = \sum_{(x,y)\in N} [I(u+x,v+y) - P(x,y)]^2$$

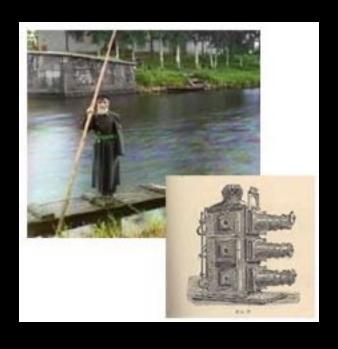
– Normalized Correlation (NCC):

$$ncc(u,v) = \frac{\sum\limits_{(x,y)\in N} \left[I(u+x,v+y) - \overline{I} \left[P(x,y) - \overline{P}\right]\right]}{\sqrt{\sum\limits_{(x,y)\in N} \left[I(u+x,v+y) - \overline{I}\right]^2 \sum\limits_{(x,y)\in N} \left[P(x,y) - \overline{P}\right]^2}}$$

Review: Global/Local warping

Prokudin-Gorskii's Color Photography (1907)





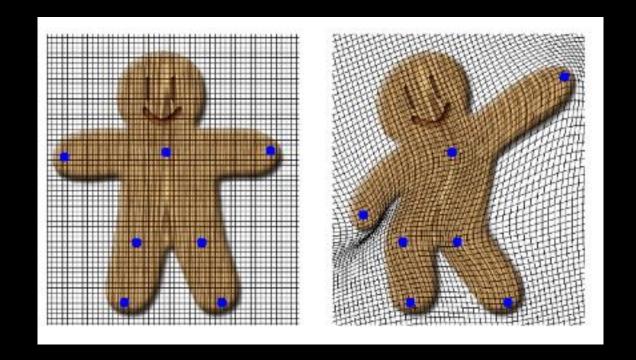
Review: Global/Local warping

Global vs. Local warping

Parameter sharing

Dense vs. sparse warping

- Degree of freedom
- Interpolation vs. curve fitting?



Triangulation vs. Moving Least Squares

- Piece-wise function
- Spatially-varying objective functions

Face Warping Demo

Data-Driven Graphics

Jun-Yan Zhu

16-726 Learning-based Image Synthesis, Spring 2022

Data-Driven Graphics

Jun-Yan Zhu

16-726 Learning-based Image Synthesis, Spring 2022

Subject-specific Data

Photos of Coliseum

Portraits of Bill Clinton

Much of Captured World is "generic"

Generic Data

street scenes

Food plates

faces

pedestrians

Big Visual Data

flickr 6 billion images

1 billion images served daily

facebook.

70 billion images

The Internet as a Data Source

- Social Networking Sites (e.g., Facebook, Snapchat)
- Image Search Engines (e.g., Google, Bing)
- Photo Sharing Sites (e.g., Instagram, Flickr, Adobe Stock)
- Computer Vision Databases (e.g., ImageNet, Places, OpenImages)

Too Big for Humans [Perona 2010]

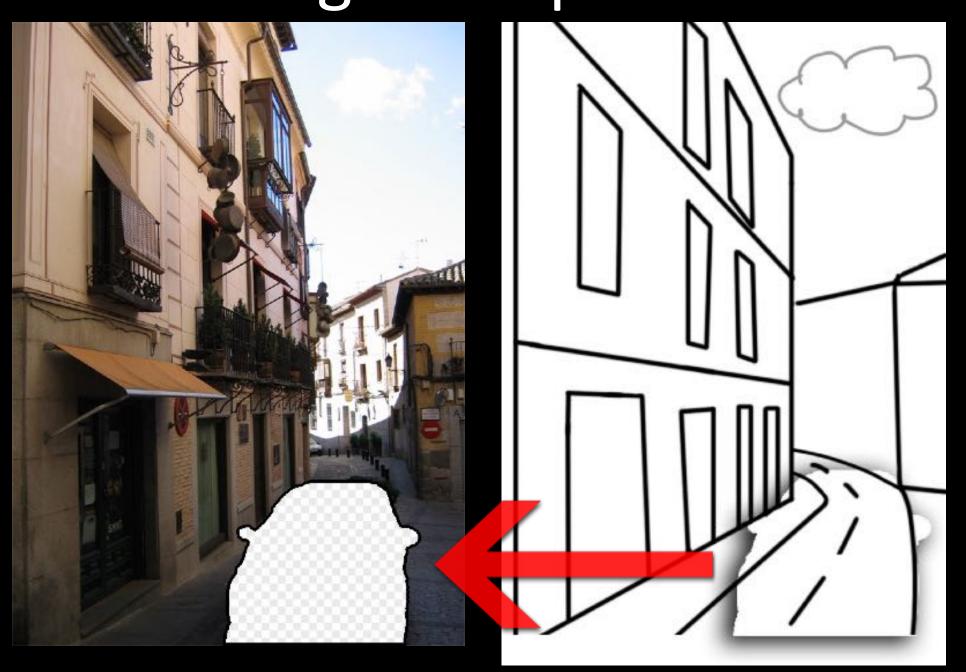
Big issues

- What is out there on the Internet? How do we get it? What can we do with it?
- How do we compute distances between images?

Is Big Visual Data useful?

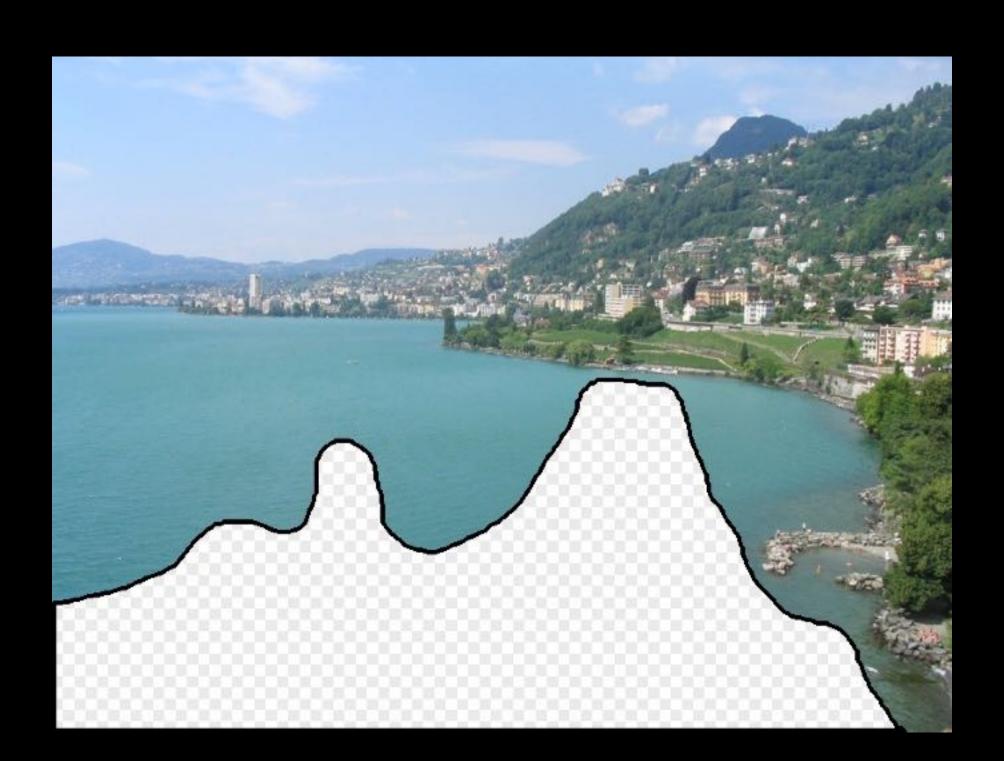
A motivating example...

Scene Matching for Image Completion

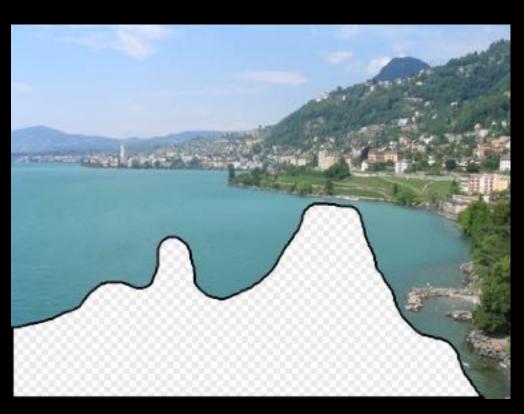


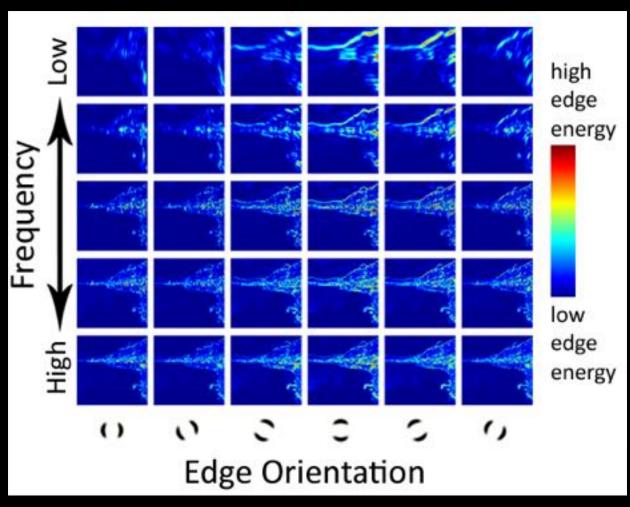
The Algorithm

Scene Matching

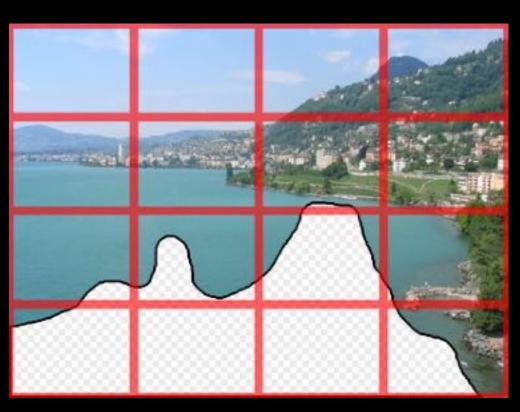


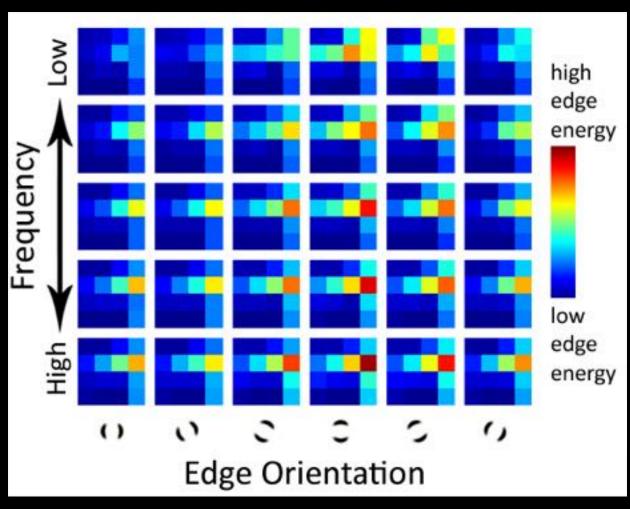
Scene Descriptor



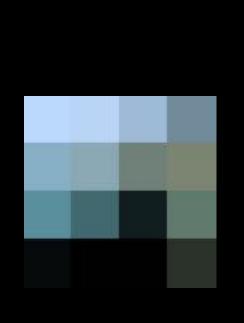


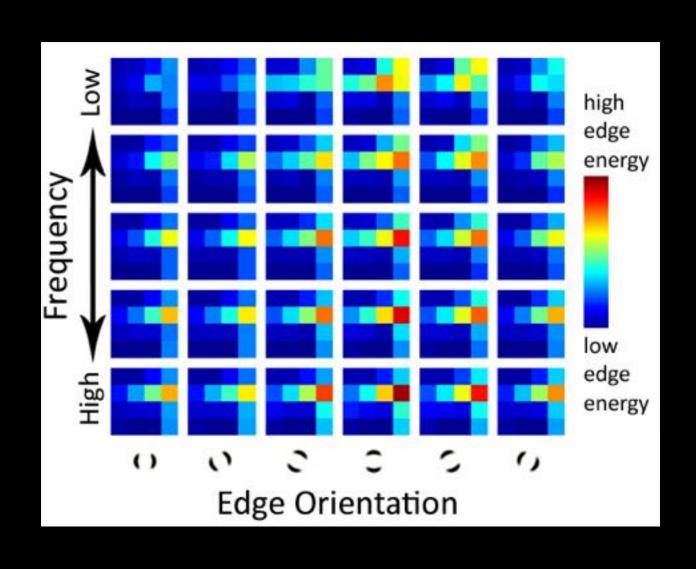
Scene Descriptor

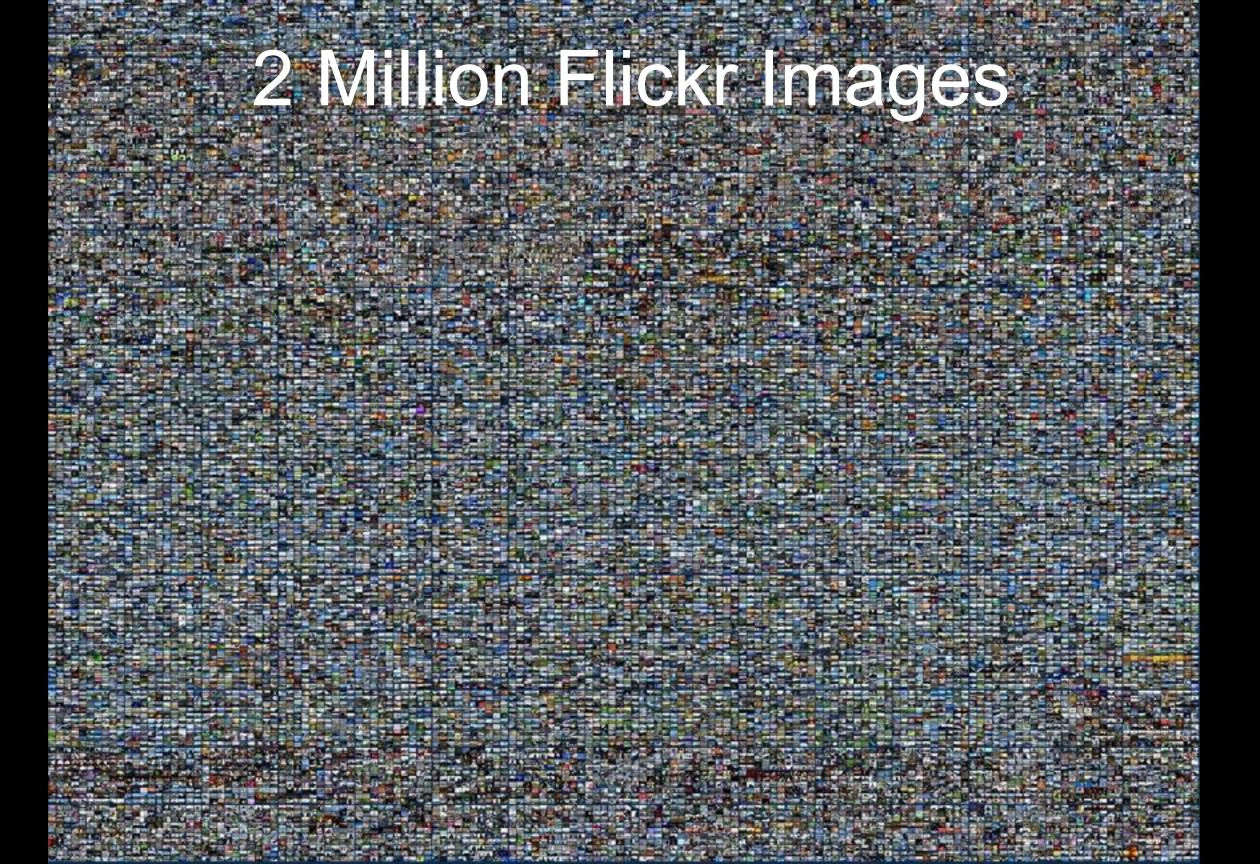


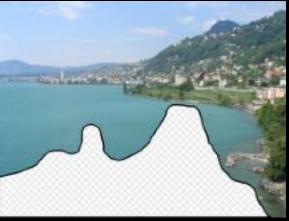


Scene Descriptor









Context Matching

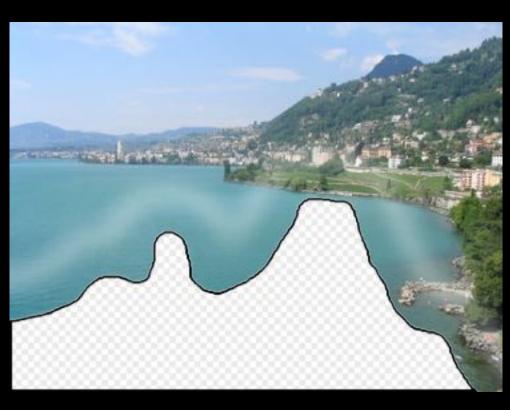
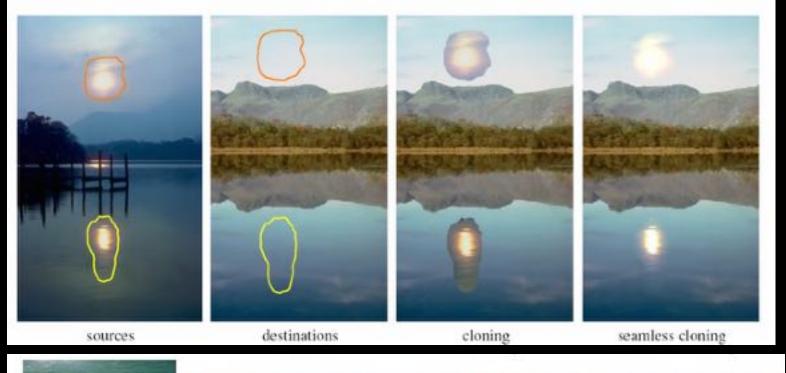


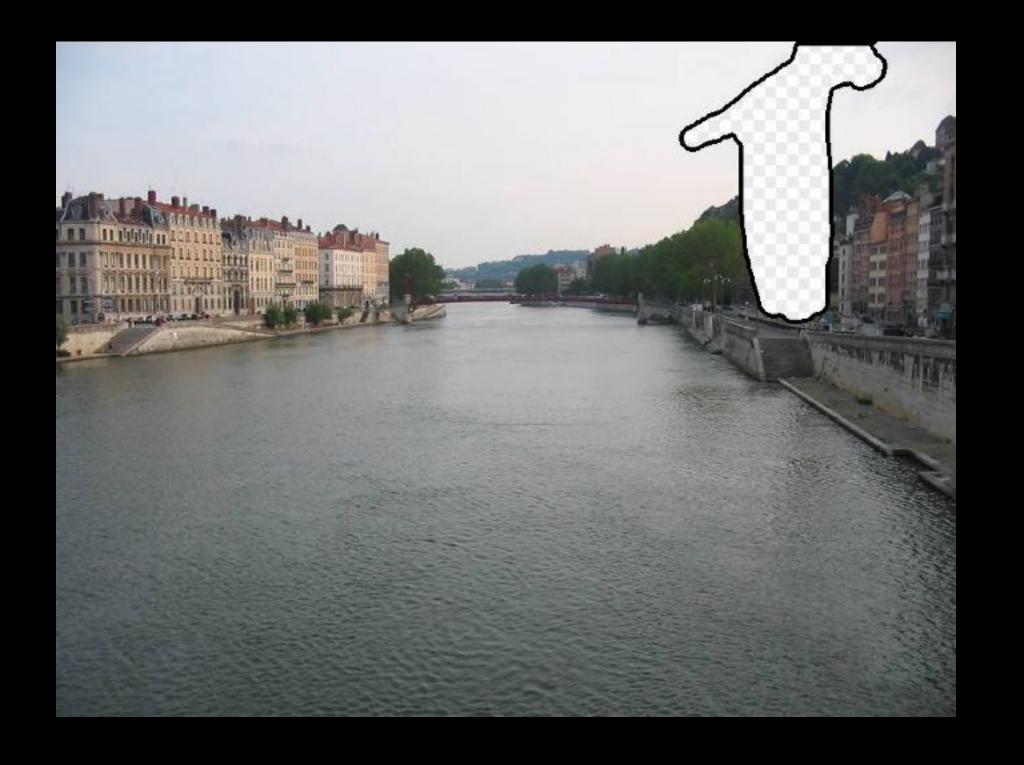
Image Blending

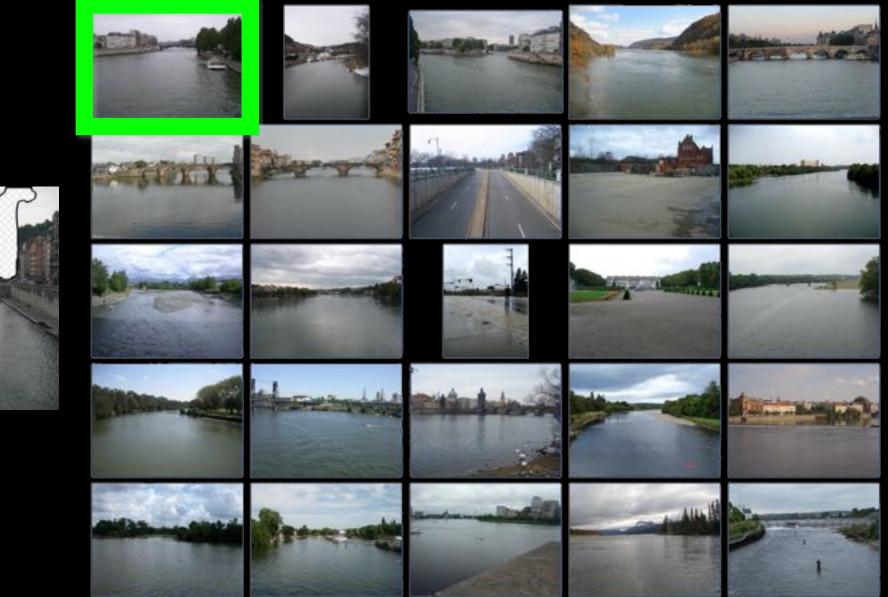
Poisson Image Blending



More details in the later lectures.

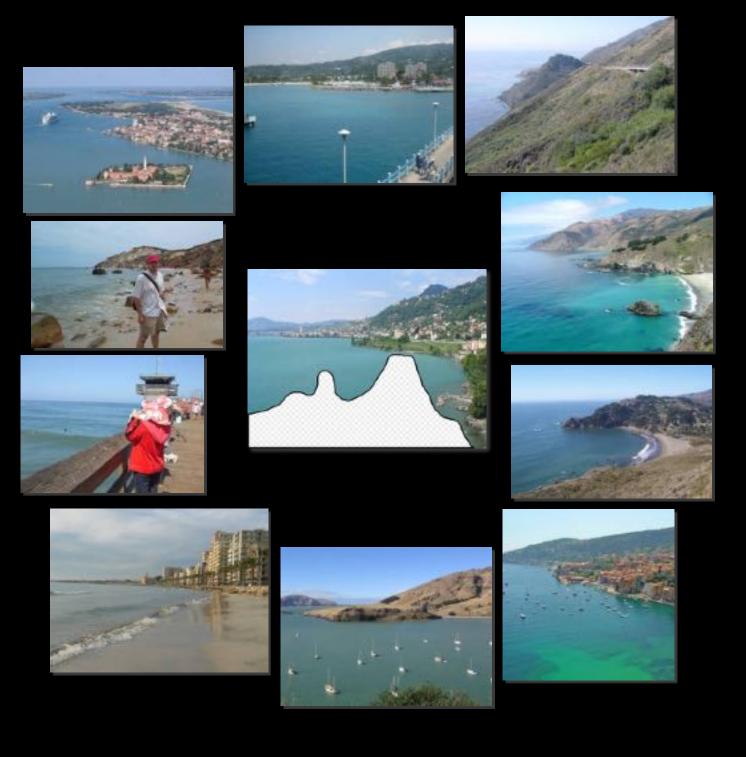
More results



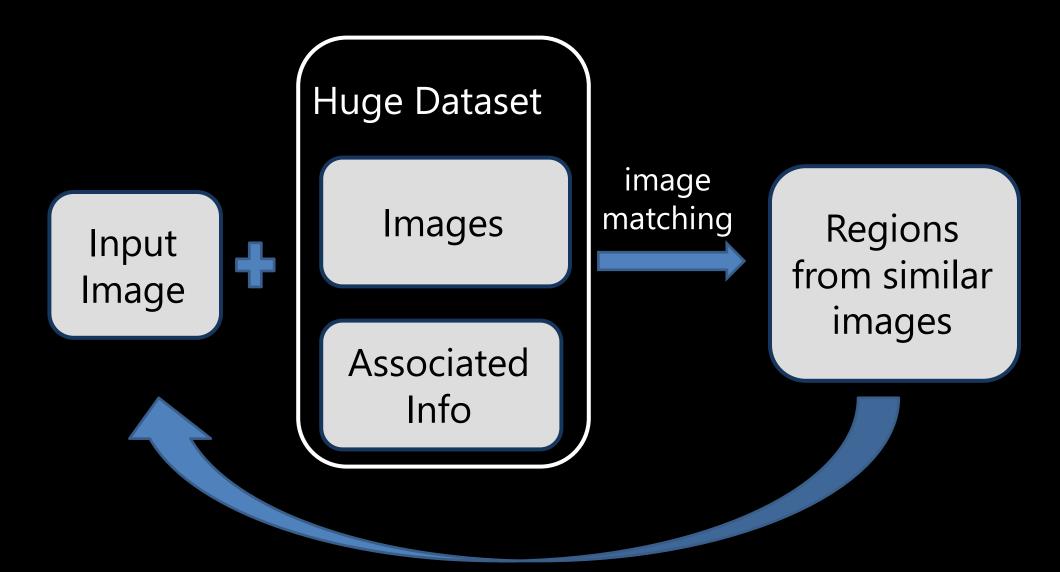




Why does it work?

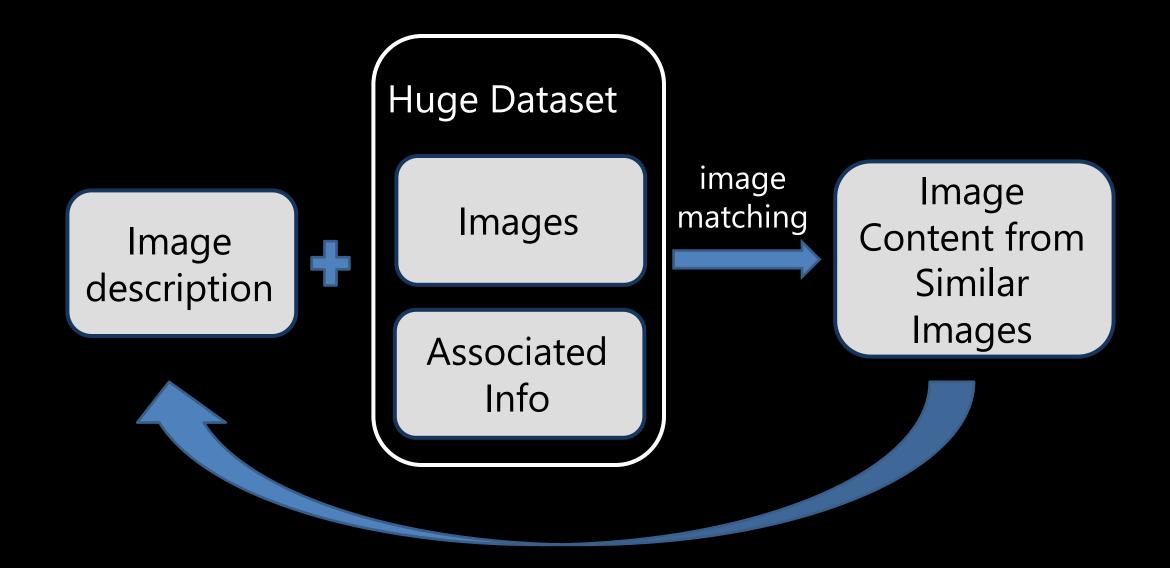


Recap: Using lots of data!



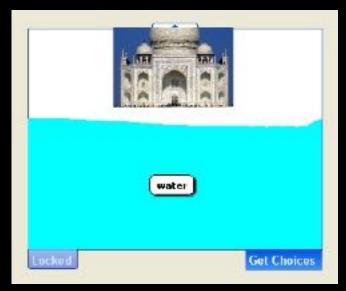
Trick: If you have enough images, the dataset will contain very similar images that you can find with simple matching methods.

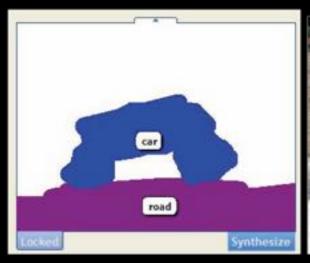
Semantic Photo Synthesis



M. Johnson, G. Brostow, J. Shotton, O. A. c, and R. Cipolla, "Semantic Photo Synthesis," Computer Graphics Forum Journal (Eurographics 2006), vol. 25, no. 3, 2006.

Semantic Photo Synthesis [EG'06]





Johnson, Brostow, Shotton, Arandjelovic, Kwatra, and Cipolla. Eurographics 2006.

Semantic Photo Synthesis

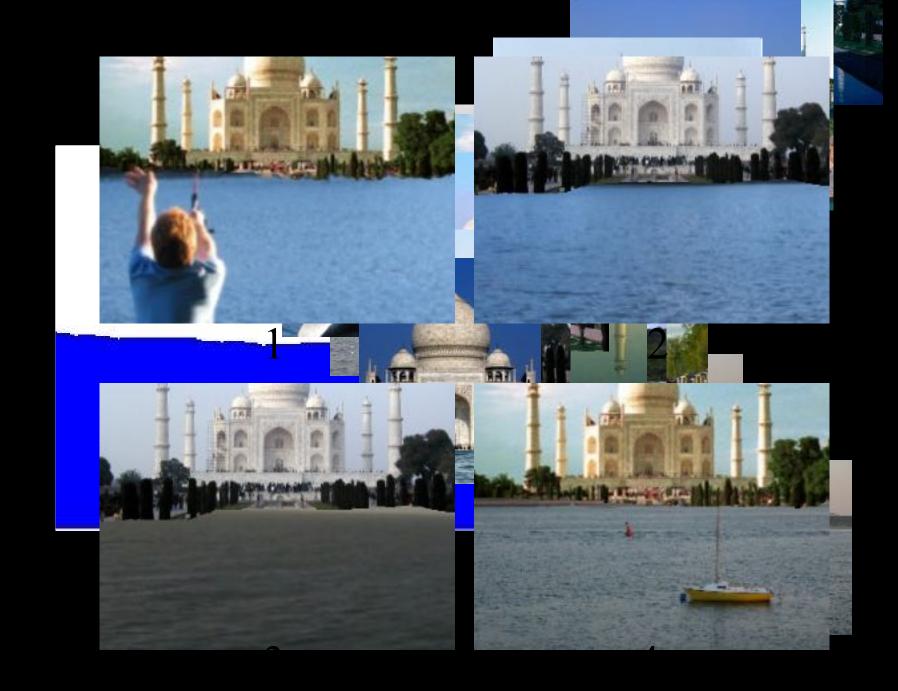
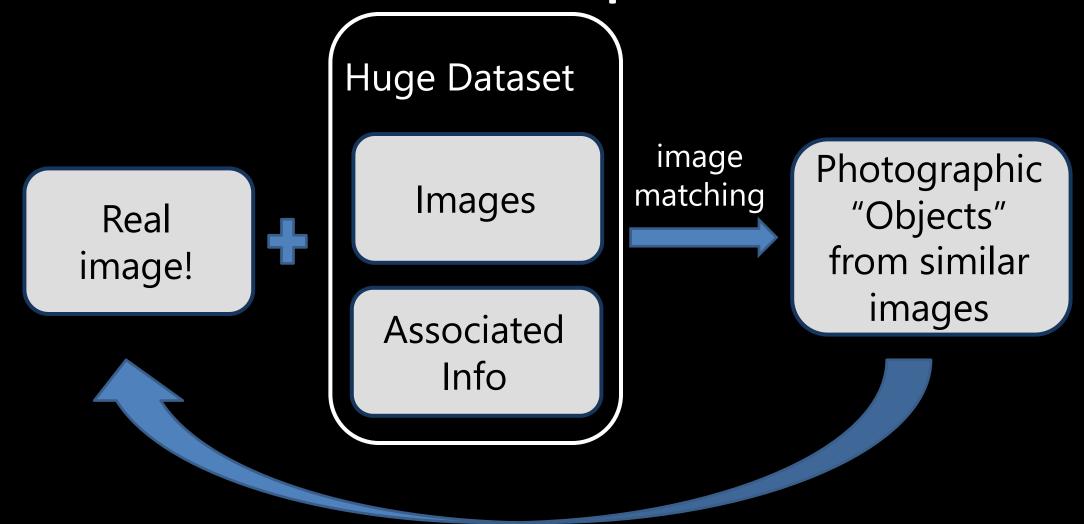


Photo Clip Art



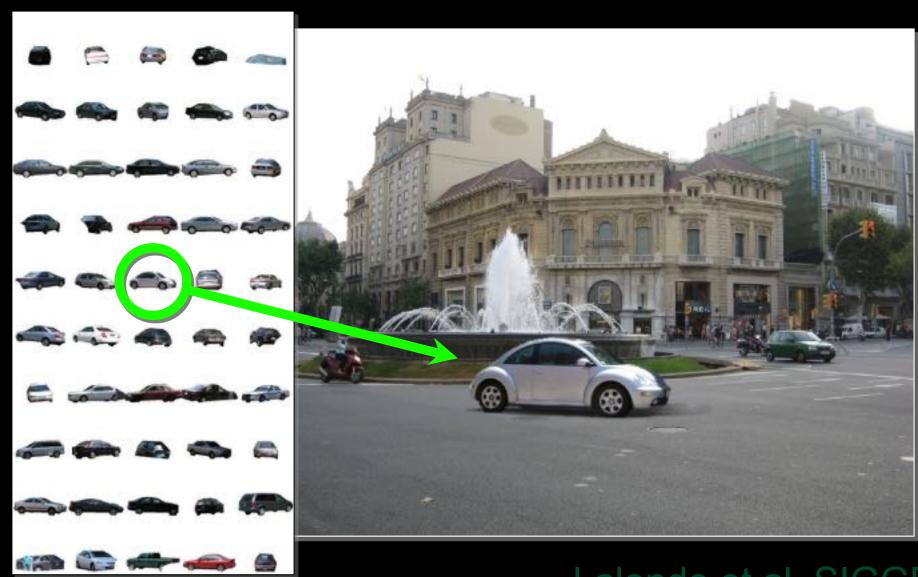
J.-F. Lalonde, D. Hoiem, A. A. Efros, C. Rother, J. Winn, and A. Criminisi, "Photo Clip Art," ACM Transactions on Graphics (SIGGRAPH 2007), vol. 26, no. 3, Aug. 2007.

Photo Clip Art [SIGGRAPH 2007]

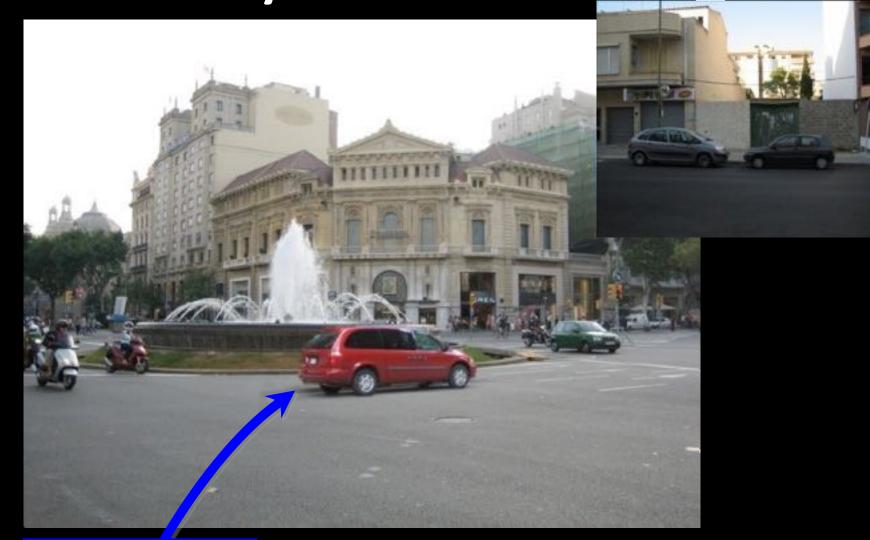
Inserting a single object -- still very hard!

Photo Clip Art

Use database to find well-fitting object



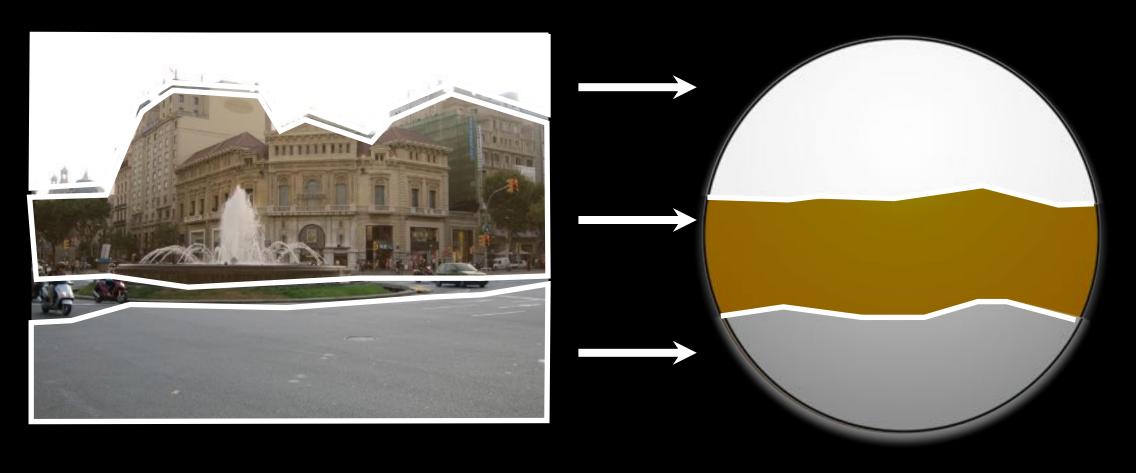
Geometry is not enough



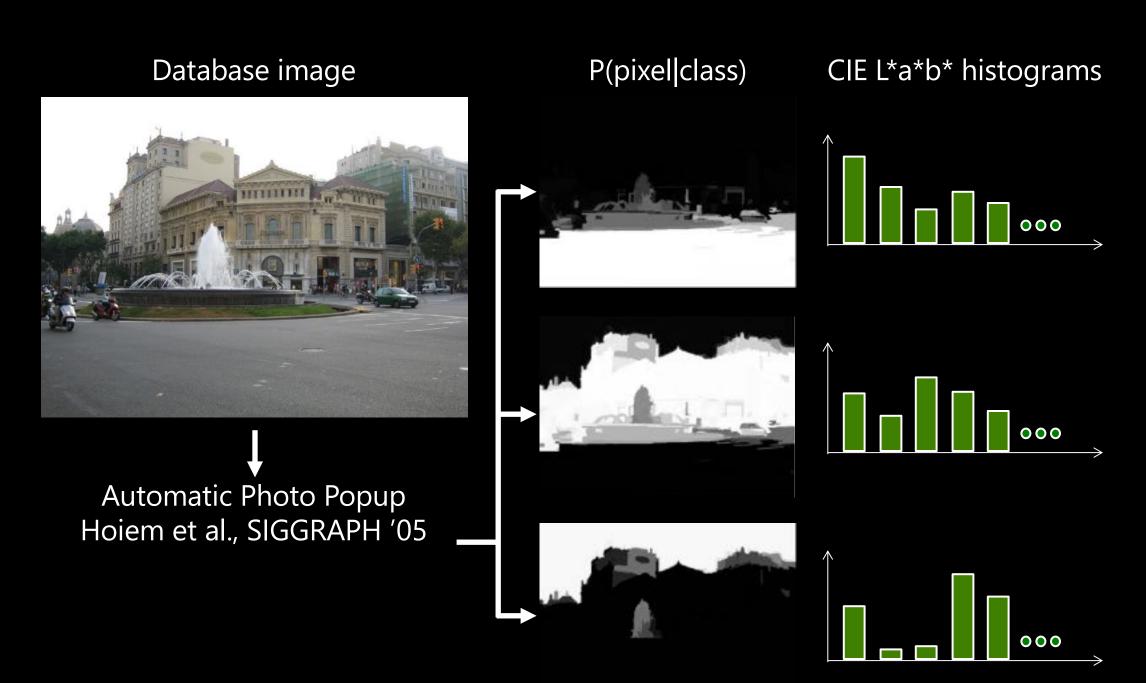
Illumination context

- Exact environment map is impossible
- Approximations [Khan et al., '06]Database image

Environment map rough approximation



Illumination context



Illumination nearest-neighbors

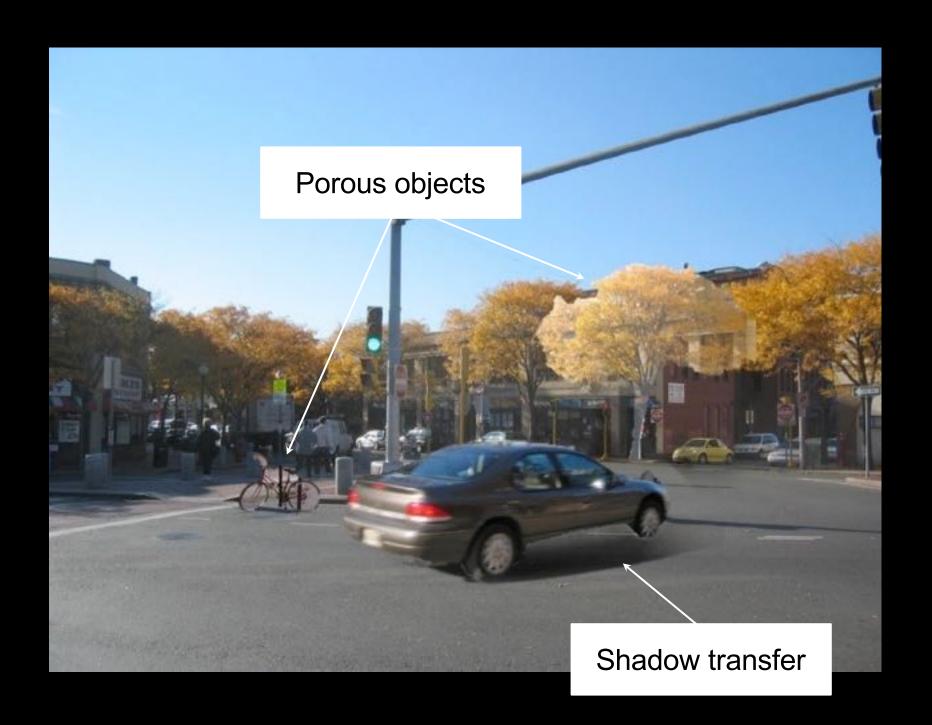
Street accident

Bridge

Painting

Alley

Failure cases



Failure cases

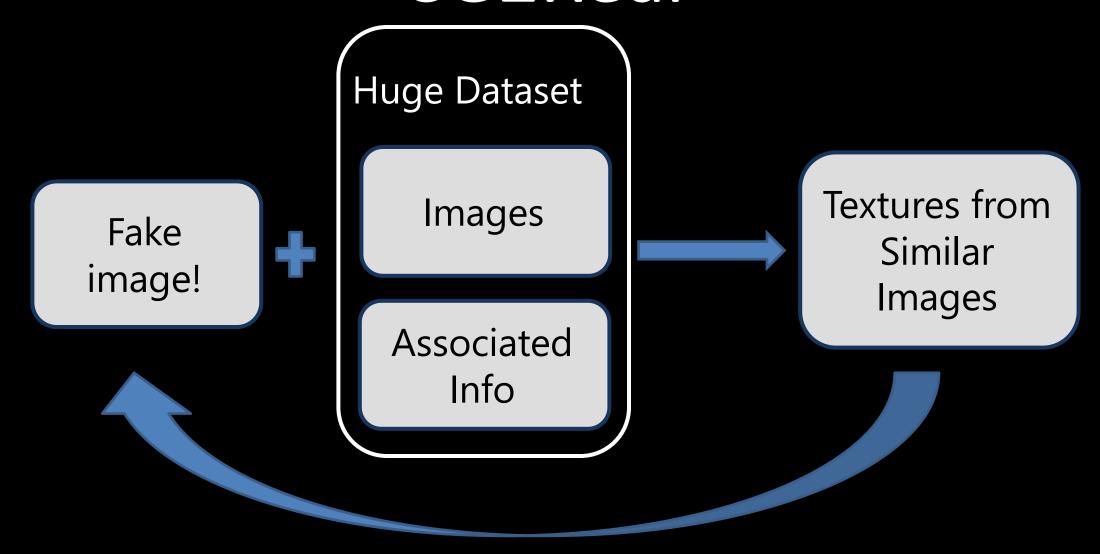
Review (Data-driven Graphics)

- How to find images given a user query?
 - Image Retrieval (Gist descriptor? Deep learning?)
 - Big data helps!
- How to combine images?
 - Image blending (Poisson Equation)

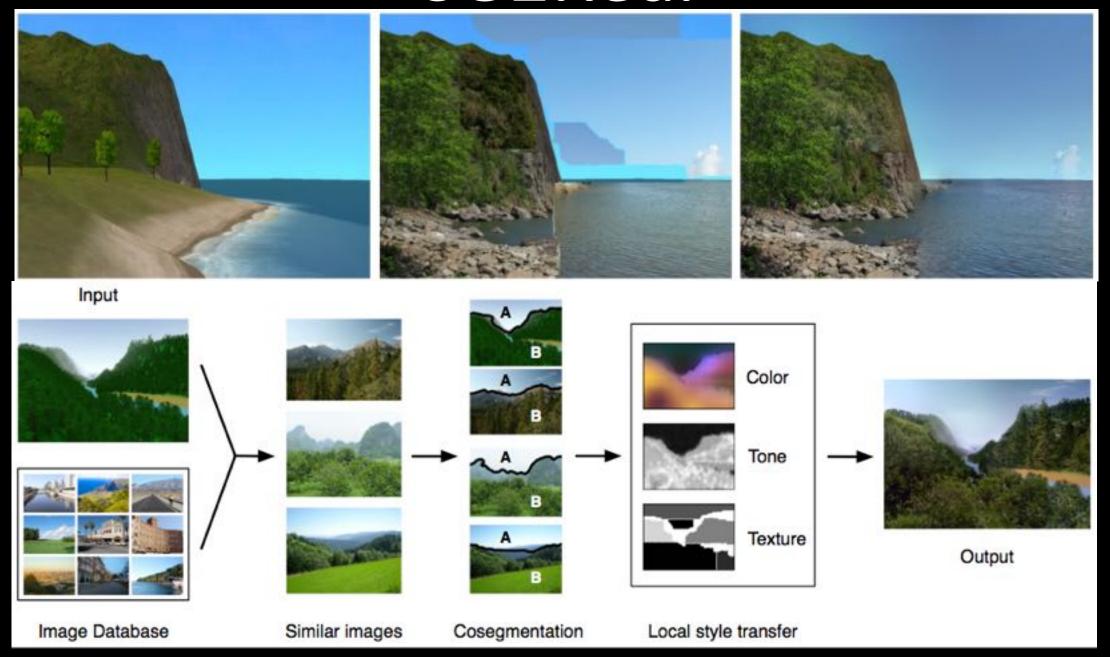
How to Combine Images?

- Image Blending/Compositing:
 - Each piece comes from a different image.
 - Need to hide the boundary

CG2Real

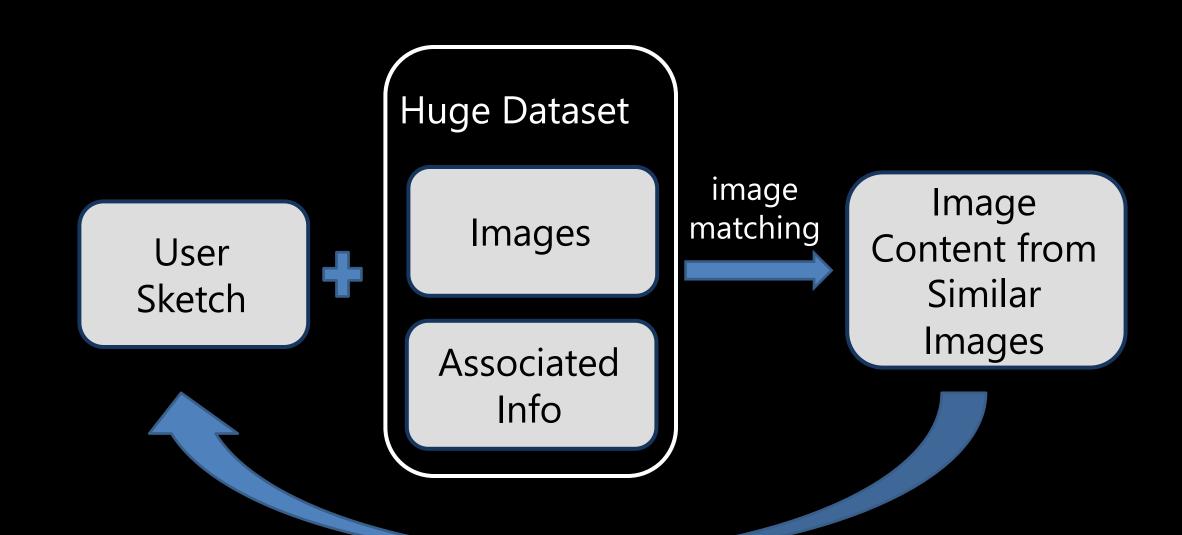


CG2Real



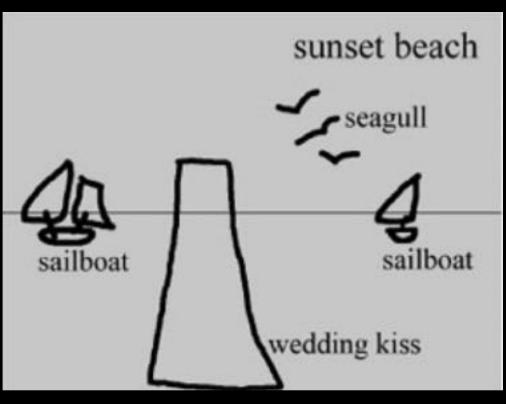
M. K. Johnson, K. Dale, S. Avidan, H. Pfister, W. T. Freeman, and W. Matusik, "CG2Real: Improving the realism of computer generated images using a large collection of photographs," IEEE TVCG, 2010.

Sketch2Photo



Sketch2Photo

Sketch-based image retrieval + image blending

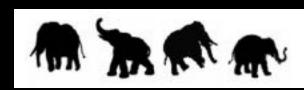


User Input

Database images

Output

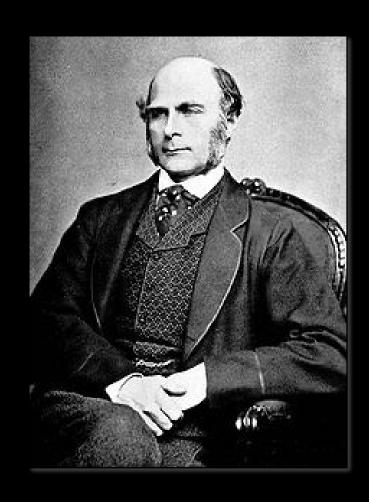
Sketch2Photo: Internet Image Montage. Tao et al. SIGGRAPH Asia 2009.



How to Combine Images?

- Image Blending/Compositing:
 - Each piece comes from a different image.
 - Need to hide the boundary
- Image Averaging
 - Each pixel is a combination of multiple pixels from different images.
 - Special case: Cross-Dissolve (two images)

Image Averaging



Multiple Individuals

Composite

Sir Francis Galton 1822-1911

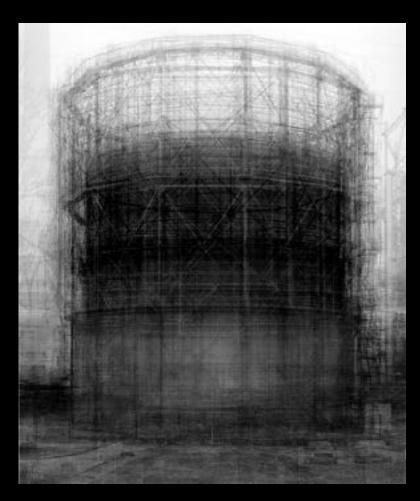
Average Images in Art

"60 passagers de 2e classe du metro, entre 9h et 11h" (1985)

Krzysztof Pruszkowski

"Dynamism of a cyclist" (2001)

James Campbell



"Spherical type gasholders" (2004)

Idris Khan

"100 Special Moments" (2004) by Jason Salavon

Newlyweds

Little Leaguer

Kids with Santa

Not so simple...

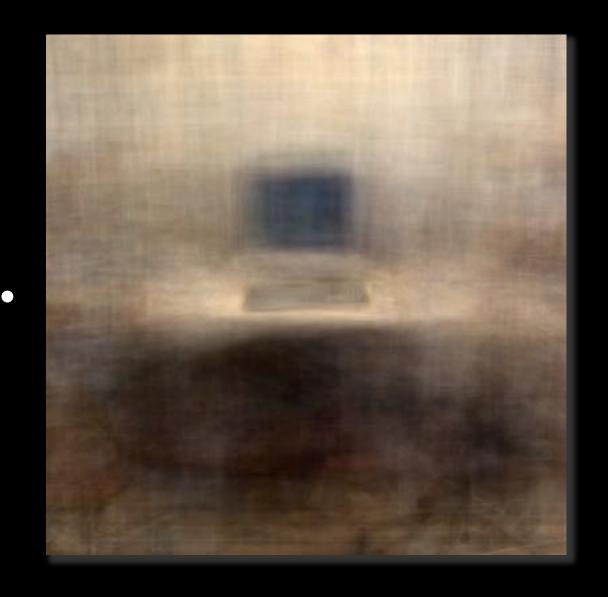
Jason Salavon
"Kids with Santa"

Google query result:
"kids with Santa"

Automatic Average

Why Difficult?

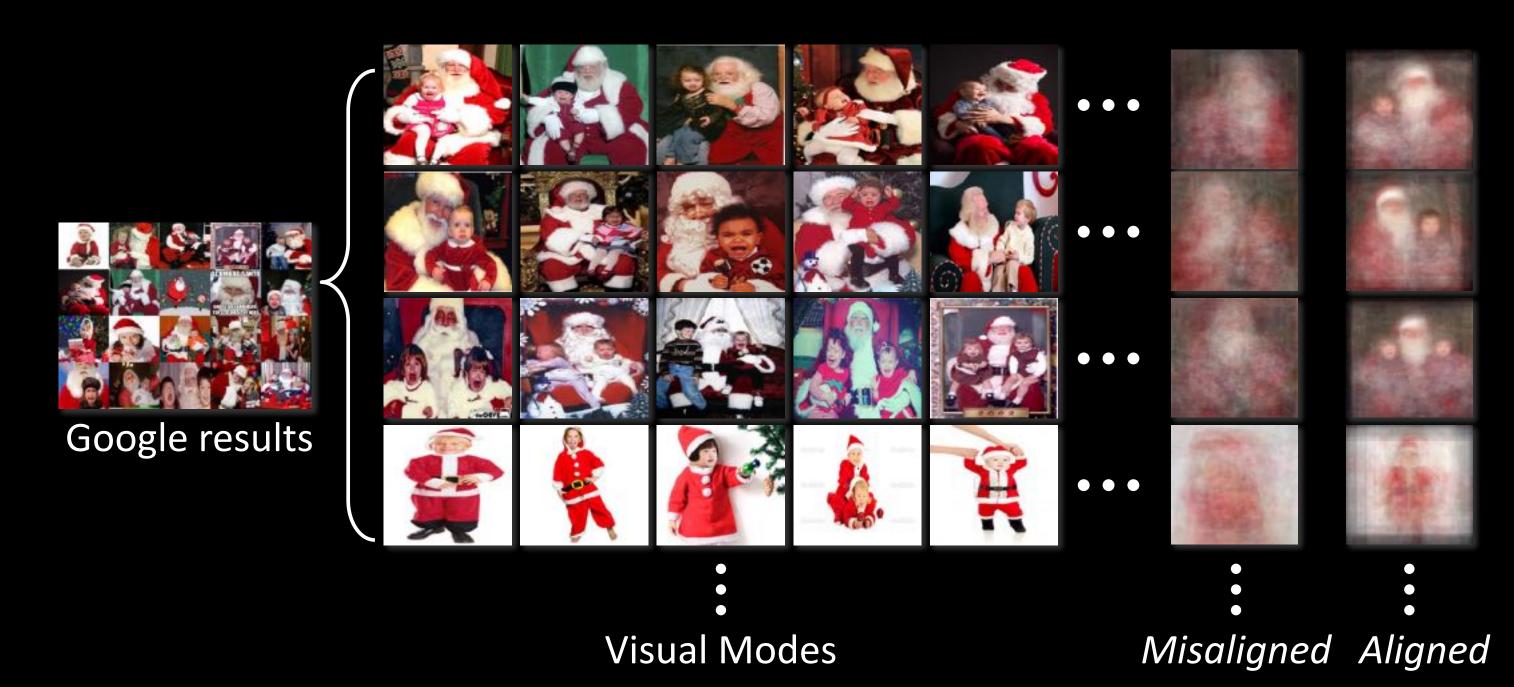
"Object-Centric Averages" (2001) by Antonio Torralba



Manual Annotation and Alignment

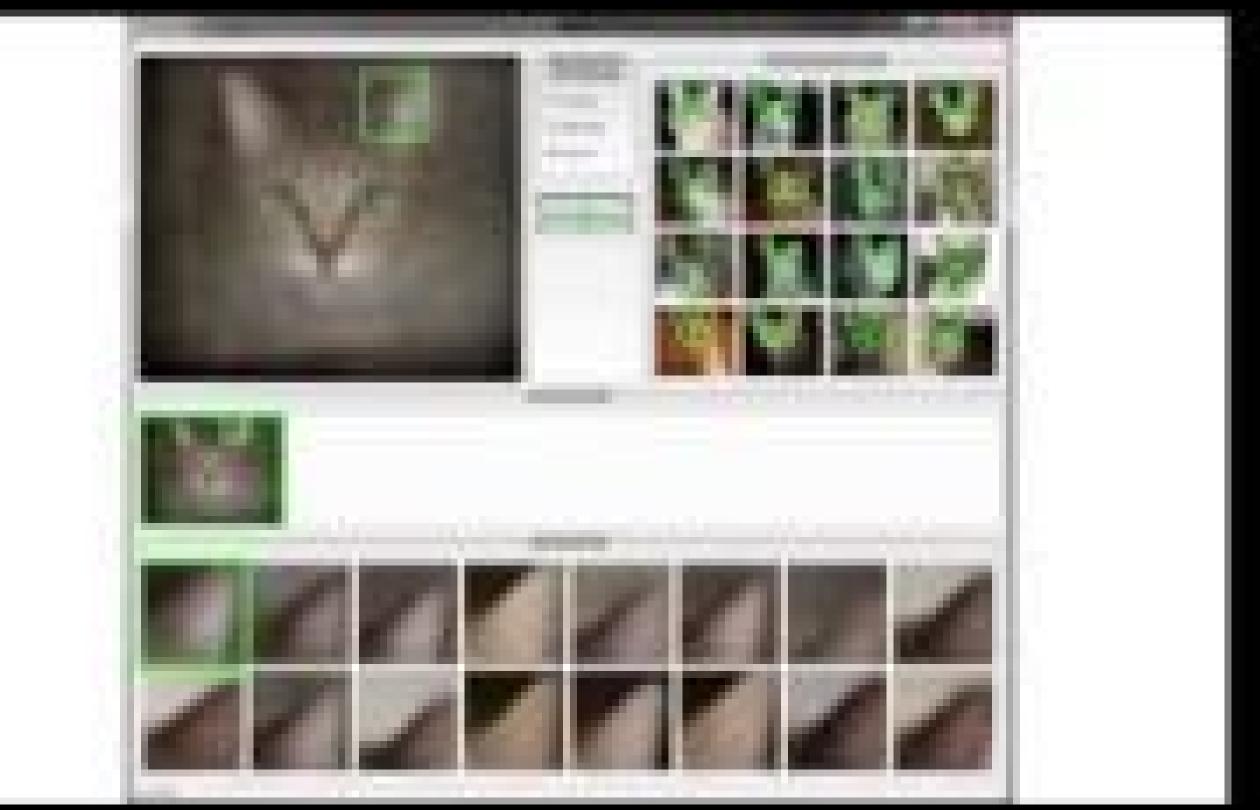
Average Image

With Alignment



Goal:

An interactive system to rapidly explore and align a large image collection using *image* averaging



Zhu, Lee, Efros. AverageExplorer: Interactive Exploration and Alignment of Visual Data Collections, SIGGARPH 2014.

Weighted Averages vie Walignment

Image Collection $\{I_1 \cdots I_N\}$ (e.g. "Kids with Santa" images)

Average I_{avg}

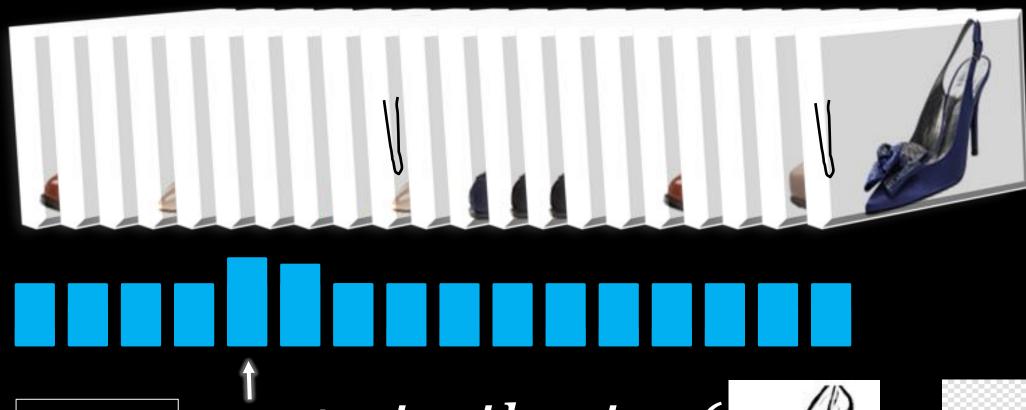
Image Weights $\{s_1 \cdots s_N\}$

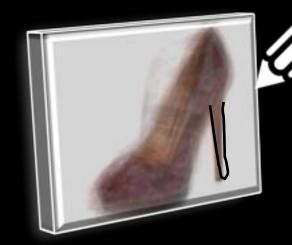
$$I_{avg} = \sum_{i=1}^{N} I_i I_i$$

Sketching Brush

Inhage Collection $\{I_1 \cdots I_N\}_2$

Average



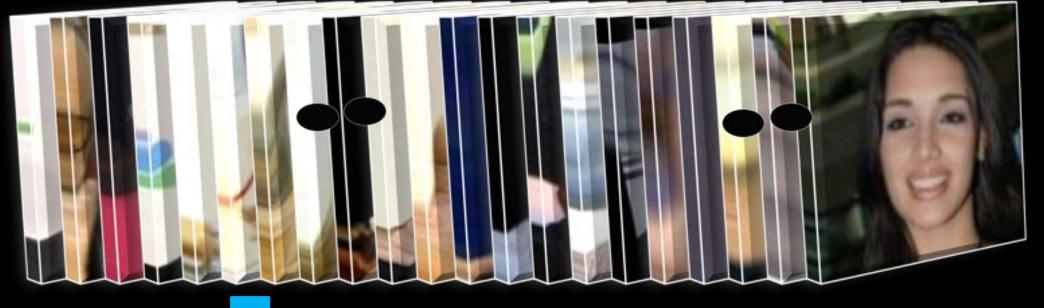


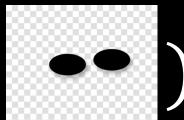
Weight $\rightarrow \dot{S}_i + similarity($

Coloring Brush

In fage Collection $\{I_1 \cdots I_N\}I_2$

Average





Explorer Brush: Select a Local Mode

Local Visual Modes

N ImageBatches

Mid-level $s_i = \overline{s_i + similarity}$

Discriminative Patch Discovery [Doersch et al. 2012]

Weighted Averages + Alignment

Image Collection $\{I_1 \cdots I_N\}$ (e.g. "Kids with Santa" images)

Average I_{avg}



Image Weights $\{s_1 \cdots s_N\}$

Image Alignment

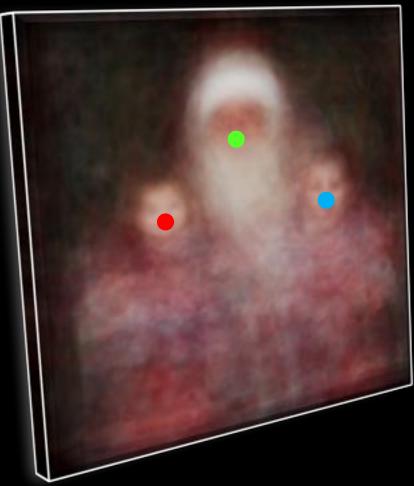
User Edit

Image 1

Image 2

Average Image

Image Warping

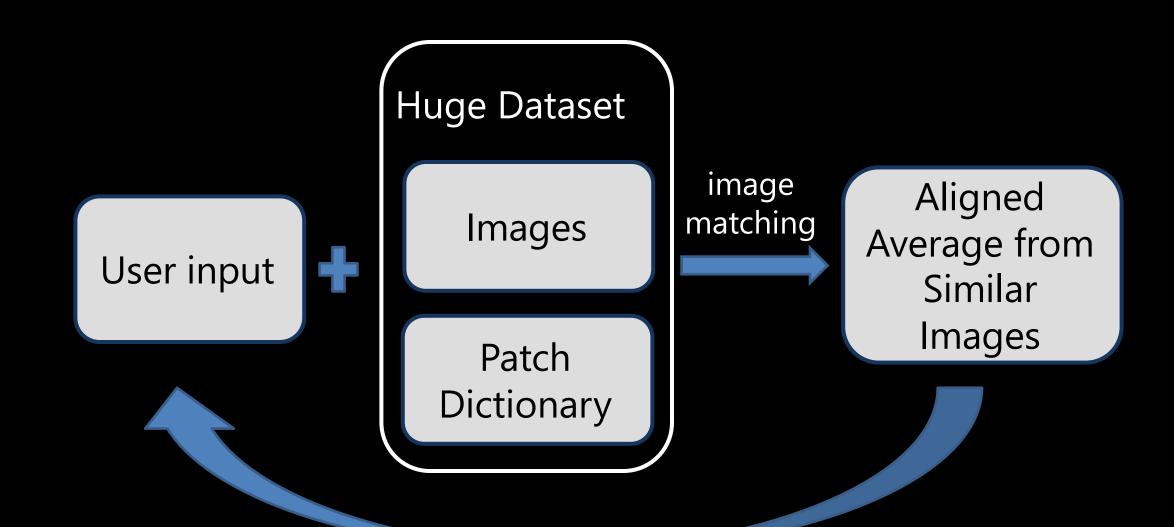


Different Cat Breeds (Simple Average)

Different Cat Breeds (Our Result)

Application: Online shopping

AverageExplorer



ShadowDraw

